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Abstract. Unsteady flow routing models used for reai-time flow predictions or storm
drainage network design must be capable of simulating mixed flows, i.e., flows which
change with time and location along the storm conduit from free surface unsteady flow to
pressurized flow and conversely. A general description of such a mathematical model is
presented. The-model will also properly predict backwater effects, flow reversals, ‘and-
surface flooding effects. The model is based on the complete one-dimensional equations of
unsteady flow which are solved by a weighted four-point implicit finite difference scheme.
At each time step, a system of nonlinear algebraic difference equations are solved for the
unknown flow and water surface elevation at specified locations along the storm drainage
network using Newton-Raphson iteration and a specially constructed Gaussian elimination
matrix technique which has efficient computational properties. The model utilizes a very
narrow fictitious slot emanating from the top of the storm conduit to effect the proper wave
propagation speed when the conduit becomes pressurized. The conduit may be circular or
have an arbitrary shape. The storm drainage network may be a single conduit or a.dendritic
network of conduits including muitiple outlets and bypasses. Complex internal hydraulics
due to the presence of manholes, overflow weirs, off-line detention storage basins and
pumping stations are simulated via appropriate equations introduced within the system of
flow equations as internal boundary conditions.

I ion

When a storm drainage network receives flows from a large storm event, the flow regime
may change from an initial free surface flow everywhere within the system to a mixed flow
regime in which portions of the system experience pressurized flow as the conduit continues
to fill. Unsteady flow routing models used for real-time flow prediction or storm drainage
network design must be capable of simulating such mixed flows, i.e., flows which change
with time and location along the storm drains from free surface unsteady flow to pressurized
flow and conversely. During the time when the flow is in the free surface regime, many
large trunk storm conduits are subject to backwater and reverse flow effects due to the very
mild slopes dictated by outlet conditions and topography. An unsteady flow routing model
must be able to properly simulate such effects which significantly depiete available storage
within the system and help to actuate the pressurization of the system. For this reason, the
routing model must be of either the dynamic wave or diffusion type. The degree of
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of unsteadiness of the flow within a storm drainage network due to rapidly increasing inflows
and pressurization waves favors the use of a dynamic wave type routing model.

The purpose of this paper is to present a description of an unsteady flow routing model
capable of simulating mixed flows, backwater effects, reverse flows, and rapidly varying
transient flows in mild sloping storm drainage networks. The model is of the dynamic wave
type and is based on the complete one-dimensional equations of unsteady flow (Saint-Venant
equations) which are soived by a weighted four-point implicit finite difference scheme. At
each time step, a system of nonlinear algebraic difference equations are soived for the-
unknown flow and water surface elevation at specified locations (nodes) along the storm
water conduit by using Newton-Raphson iteration coupled with a specially constructed
Gaussian elimination matrix technique which provides very efficient computational
properties. The storm conduit may be of circular or arbitrary shape. The network may
consist of a single pipe or a dendritic system of pipes including muitiple outlets, bypasses,
and cross-connections. The model’s mixed flow capability is made possible by introducing a
very narrow fictitious chimney or slot in the top of the pipe after than introduced by Cunge
and Wegner and referred to as the Preissmann slot.! Compiex internal hydraulics due to the
presence of manholes, overflow weirs, time-dependent gates, off-line detention storage basins
and pumping stations, and drop inlet structures are simulated via appropriate equations
introduced within the system of nonlinear flow equations as internal boundary conditions.
The storage and pumping basins are connected to the storm drainage system via weir
overflows where submergence effects and possible flow reversals are considered. Each
pump has its individual operating characteristics. Surface flooding, occurring at manholes
when the conduit is pressurized, is either considered lost to the system or returns
undiminished in volume after flooding a prescribed area. The downstream outlet(s) of the
storm drainage system are governed by a specified head-discharge rating or water elevation-
time history.

tion to Previ Work

A variety of flow routing models have been developed specifically for storm drainage
systems. Differences in the models can be attributed to their degree of simplicity, required
computational effort, computational techniques utilized, and their general applicability.

Some very simple models include the Chicago Hydrograph Method reported by Tholin and
Keefer, the TRRL model by Watkins, and the ILLUDAS model described by Terstriep and
Stall.>*4 These routing models are based on steady flow hydraulics. Other simple models
include the SURKNET model, presented by Pansaic and Yen, and the Wallingsford model
described by Price.>® Both of these models handle mixed flow. SURKNET uses a kinematic
routing technique for free surface flow and treats the pressurized flow with a cascade solution
technique from upstream to downstream. The Wallingsford model uses the Muskingum-
Cunge routing method for free surface flows and solves the pressurized flow equations
simultaneously for all pipe segments in which pressurization ogcurs.” Time steps are 15-30
seconds for free surface flow and 1 second for pressurized flow. Both of these models
consider surface flooding due to surcharged manholes, but neither consider backwater effects
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or flow reversals in the free surface regime. Wood and Heitzman have developed an explicit
finite element model for the complete one-dimensional equations of pressurized flow in a
dendritic network of conduits.® They aiso developed two simpler models for pressurized
flow only.

A few models are based on the compiete one-dimensional unsteady flow (Saint-Venant)
equations for the free surface regime with special treatment of the pressurized flow regime.
In the popular SWMM model, the free surface flow routing uses a kinematic technique or an
alternative method described by Roesner et al. based on an explicit finite difference solution
of the Saint-Venant equations.” Pressurized flow is handled through a modified continuity
relationship applied at each manhole. Any surface flooding is assumed to be lost from the
system. Extremely small time steps are required for numerical stability. Song et al. have
developed.a.model which uses an explicit-finite difference solution of the characteristic form
of the one-dimensional unsteady flow equations with the small disturbance celerity changed
as the conduit undergoes pressurization.!® A shock fitting technique, similar to that used by
Cunge et al., is used at the interface of the two flow regimes.!! Numerical stability restricts
the allowable time step to about 0.5 - 2 seconds, depending on the propagation speed of the
pressurization wave. Surface flooding is not considered. Two proprietary models developed
in Europe which are not readily available have been reported in the literature. The French
model, CAREDAS, developed by Sogréah, and the SYSTEM II SEWER model, developed
at the Danish Hydraulics Institute, use the so-called Preissmann slot technique to enable the
Saint-Venant equations to handle both free surface and pressurized flow.!213 Song et al. also
have a model which uses the slot technique along with an explicit method of characteristics
solution of the Saint-Venant equations. '°

The model presented in this paper is similar to the European models in that a fictitious slot is
used to enable the Saint-Venant equations to handle pressurized flow. It differs in the way
the Saint-Venant equations are expressed in finite difference form and in the way a network
of conduits are computationally treated. Other differences include the internal boundary
equations used to simulate selected critical flow drop inlets, off-line detention storage and
pumping basins, surface flooding, and junction losses. This model is a significant extension
of the work of Bhattacharyya and Fread.!* It is an optional modification to the National
Weather Service DWOPER model which has received widespread use within the engineering
community for a variety of unsteady free surface flow routing applications.!S Due to the
basic DWOPER model having a modular construction with specialized subroutines and
variable array sizes, the modifications required for mixed flow routing in conduit networks
has little effect on its required computational resources.

Model Descrioti
Joverning Equati

The mixed flow rou—ting model is based on the one-dimensjgnal Saint-Venant equations of
unsteady flow, i.e., R



a |

= at -q=0 )
2 h -
%% + 6(%X/A) + gA [%x- + S,] =0 )
. . _n%QlQ
where: S, = m 3)
and n = 0.0735 2 4'° )

in which Q = flow (ft¥/sec), A = cross-sectional area (ft¥), q = lateral inflow (ft*/sec),

x = distance along the conduit (ft), t = time (sec), g = accelerauon due to gravity (ft/sec’)
h = water surface elevation (ft), S, = friction slope (ft/ft), R = hydraulic radius (ft) =

where P is the wetted perimeter (ft) of the cross-section, n = Manning roughness coefﬁcient,
d = the conduit diameter (ft), and f = the Darcy friction factor.

Eq. (1) which conserves mass, and Eq. (2) which conserves momentum, are quasi-linear
hyperbolic partial differential equations. They are solved herein by using a numerical
approximation procedure, the weighted four-pomt implicit finite difference scheme which
obtains solutions of h and Q at discrete points in space (x) and time (t). In this scheme, the
following approximations are used:

9&% = (Ki" « K - K - K24t ®
% = o (K - Ki"Vax, + (1-0) (K, - Kijax, (6)
= o (K3 + KI")2 + (1-6) (K, + K2 (7

in which K represents any variable (Q, h, q, A, Sy in Egs. (1-2) and the (i, i+1) subscripts
represent locations (nodes) along the conduit in the x-direction and the superscripts (, j+1)
represent successive points in time. The recommended value of the weighting factor () is in
the range 0.55 < 0 < 0.65.

Substituting Egs. (5-7) into Eq. (1) and Eq. (2), respectively, yields the following difference
equations after some minor rearranging of terms:

6 (Qi - Q" - Qi"ax) + (1-6) (Qi - Qi - giax) ®
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Egs. (8-9) are nonlinear with respect to the unknowns ( i, Qi i, ?I.'). The terms A
and P are known functions of h, and S is a known function of Q and h. All terms with a
superscript (j) are known from the initial conditions or a previous solution at the j® time.

Initial Conditi

The initial conditions are the values of h{ and Q/ for all nodes (i = 1, 2, ..., N) along the x-
axis at time (t = 0) or j = 1. In this model, these may be obtained by either specifying
them as input to the model or by letting the model compute them on the basis of the
assumption of steady, spatially varied flow att = 0.

When they are specified as input, the model uses them to obtain solutions to Egs. (8-9), and
then uses the solutions to obtain other solutions. This process is repeated a number of times
until any small errors in the initial values have been damped out by the successive solutions.
If the initial values do not contain large errors, this process converges; however, it may not
if the errors are too large.

A preferable method is to let the model compute the initial conditions using the following
steady graduaily varied flow difference equation, i.e.,

Q%A)., - QA), + gA, (b, - b +§, Ax) =0 ] (15)

in which A, and S, are defined by Egs. (10-11). The computations"proceed in the upstream
direction from a specified value for h,,, at the most downstream point in the system. Thus,
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Eq. (15) is recursively solved for h;; since A; and S, are nonlinear functions of h;, Eq. (15)
is nonlinear and is solved by the Newton-Raphson iterative method for a single equation.
The model determines all the Q values by a simple summation process using inflow values at
t = O for all specified inflow points. The h and Q values can be determined in this way for
either a single conduit or a complex dendritic network of conduits.

Boundary Conditi

Boundary conditions are specified values of either h or Q, or a known relation between them,
at all the upstream-most nodes in a network of conduits and at the most downstream node.

In this model, the upstream boundary conditions are known inflows as a function of time
(specified discharge hydrographs). The downstream boundary can be a known water surface
elevation as a function of time such as for submerged outlets in lakes or estuaries. Also, the
downstream boundary can be a known relation between Q and h such as normal flow, critical
flow, etc. which is input in the form of a table of Q and h values.

Solution Technique

The governing finite difference approximating equations, Egs. (8-9), can be solved once the
initial conditions are obtained and all boundary conditions specified. Egs. (8-9) cannot be
solved in an explicit or direct manner for the four unknowns since there are only two
equations. However, if Egs. (8-9) are recursively applied to each Ax segment along a single
conduit or network of conduits, a total of (2N - 4J - 2) equations with 2N unknowns can be
formulated where N is the total number of nodes and J is number of junctions. Then,
prescribed boundary conditions, one at the upstream end of each conduit and one at the
downstream end of the main conduit, and three compatibility equations for each junction in
the network, provide the necessary additional equations required for a determinate system.
The resulting system of 2N nonlinear equations with 2N unknowns is soived by a functional
iterative procedure, the Newton-Raphson method for a system of equations.'®

Computations for the iterative solution of the nonlinear system are begun by assigning trial
values to the 2N unknowns. Substitution of the trial values into the system of nonlinear
equations yields a set of 2N residuals. The Newton-Raphson method provides a means for
correcting the trial values until the residuals are reduced to a suitable tolerance level. This is
usually accomplished in one or two iterations through use of linear extrapolation for the first
trial values. A system of 2N x 2N linear equations relates the corrections to the residuals
and to a Jocobian coefficient matrix composed of partial derivatives of each equation with
respect to each unknown variable in that equation. The coefficient matrix of the linear
system had a banded structure which allows the system to be solved by a compact penta-
diagonal Gaussian elimination algorithm which is very efficient with respect to computing
time and storage. The required storage is 2N x 4 and the required number of computational
steps is approximately 38N.!” In the case of networks, the required number of computational
steps is (102 + 46J)N when using a specially constructed maftix technique which minimizes



the number of off-diagonal elements due to the junctions and operates only on the non-zero
elements in the Jacobian matrix.'®

Conduit Geometry

The conduit may be circular or arbitrary shape. A very narrow fictitious slot or chimney
emanates from the top of the conduit.

Circular Conduit Properties. Circular conduits have the following geometric properties
which are used in the model:

=7 +2sin? [(y-0/] ........ y<d (16)
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in which w = the central angle (rad) subtended by two lines drawn from the center of the
conduit to the two points where the water surface intersects the conduit perimeter, y = the
depth of flow in the conduit (ft), r = the radius of the circular conduit (ft), P = the wetted
perimeter (ft), A =-the wetted cross-sectional area (ft¥), B = top width of the wetted area
(ft), d = the diameter (ft) of the conduit, and b = the chimney width.

Arbitrary-Shaped Conduits. Conduits with an arbitrary shape whose geometric properties
may not be readily defined analytically as with circular shapes may be modeled by inputting
a table of the conduit width as a linear function of the depth, i.e., (B,, Y,) where
k=1,2,..N, N, is a sufficient number of widths to fully describe the geometry including
the fictitious slot. The wetted perimeter and area corresponding to each are caiculated
initially (one time only) as follows:

P, = P~ 2 (AB)* + AY, ' 24)

where:  AB, = (B, - B_)/2 : 25)



AY, = Y, - Y., (26)

k

and, A, =Y 058, + B, )Y, - Y.) @

t=1

In Eqgs. (24-27), the k index goes from 2 through N,; when k = 1, P, = B, and A, = 0.
The values of B, P, and A, associated with any depth (y) during the unsteady flow solution,
can be computed according to the following linear relations:

B =B+ (qu-Bk)(y-Yk)/(Y kq-Yk) (28)
P=P + @y, PYY-Y)/(Yy =YY _(29)
A = A, + 05B+B)y-Y) (30)

Egs. (28-30) are applicable when Y, <y < Yeur-

Fictitious Slot. From the top of the conduit, a hypothetical chimney or slot extends
upward."!! The purpose of the slot is to provide a cross-sectional area whose top width (b)
is very small for all flow depths greater than the top of the conduit. The small top width is
required to produce the proper celerity for pressurized flow as computed from the gravity
wave celerity equation, i.e.,

c = ygA/B 31)

in which c is the celerity (ft/sec) of a gravity wave. For a circular conduit, Eq. (31) can be
used to compute the required chimney width by replacing B with b and c with a (the celerity
of a pressure wave). Solving Eg. (31) for b yields the following relation:

b=025gm [%]2 (32)

The pressure wave celerity (a) can be computed from the properties of the conduit and the
storm water which may contain some entrained air.”” Thus,
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p= p. Vl * p" V‘V (35)

in which K = the bulk modulus of elasticity of the flowing water (Ib/ff), p = the bulk
density of the flowing water (Ib sec’/ft‘), d = the conduit diameter (ft), E = Young’s
modulus of elasticity for the conduit (Ib/f), e = the conduit wall thickness (ft), K, =
modulus of elasticity for water (Ib/ft%), K, = modulus of elasticity for air (Ib/ft?), V, = the
ratio of air volume to the total volume, V, = the ratio of water volume to the total volume,
p, = density of air (Ib sec?/ft*), and p,, = density of water (Ib sec?/ft*). In Eq. (33), the
term c, is given by the following:

¢, =a, +af 36)

in which for thick-walled conduits (e/d > 25) @, = # and a, = 1, while for thin-walled
conduits (e/d < 25):

[0 4

L=2e/d (1 +p) (37

[}

a, =d/d +e) (38)
in which p = the Poisson ratio (lateral stress/axial stress). The 8 term in Eq. (36) depends
on the rigidity of the conduit with respect to axial expansion, i.e, 8 = 1.0 if expansion joints
are used throughout the length of the conduit, 8 = 1 - y? if it is anchored everywhere, and

B = 1.25 - u if it is anchored only at the upstream end.

Entrained air greatly affects the pressure wave celerity; as the air content increases from 0.0
to 1.0 percent, the celerity can decrease from about 4000 ft/sec to 700 ft/sec. Of course,
field measurements of pressure celerity would be preferable for determining the chimney
width (b) from Eq. (32).

Internal Boundarie

Locations along the conduit network where the Saint-Venant equations are not applicable are
called internal boundaries. Such locations include manholes, junctions, drop inlets where
critical flow occurs, connections to off-line detention storage basins, and/or pumping

stations. The internal boundary consists of two equations which replace the two Saint-Venant
equations. These equations relate Q and h at the entrance(s) to a short Ax reach within
which the two internal boundary equations describe the hydraulics.

Manholes. Manholes are located where the conduit changes size, slope, and/or direction or
where there is a junction of two or three conduits. The two internal boundary equations are:

e m Qi - Qi v Q- Q. -AvAt=0 39
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b - bl - b, = 0 (40)

i/e1
b - bl - by, = 0 @) -

in which Q, = the inflow (ft/sec) to the manhole from the upstream conduit, Q,, = the
inflow from the branch conduit (m = 0 if there is no branch conduit, otherwise m = 1),
Q,., = the outflow from the manhole through the exiting downstream conduit (when there is
no branch conduit, i’ =i), h;, h,, and h,,, are the water surface elevations (ft) of the
upstream, branch, and downstream conduits, respectively, Q. = the surface inflow to the
manhole which is a specified function of time, Q, = the flow entering or leaving the
manhole via a weir-type control, As/At = the change of storage associated with the manhole
during a At time step, h, and h,, are the head losses incurred by the incoming and exiting

flows.

The weir flow (Q,) is further defined as follows:

Q. =CC,(-h)? ... h > h, (42)
where: h = (h,j" +m hi" + h{f.‘,)/(m +2) 43)
Cc=32L, (44)
c, =(1-0)" 45)
h,=(-h)/(m -h)...hand h > h, (46)
h =0.. horh < h, 47

in which h, is the crest elevation of the weir, h is the water elevation within the manhole as
given by Eq. (43) in which m = 1 when a branching conduit exists and m = 0 where there
is no branch conduit, C is the weir discharge coefficient, L, is the length (ft) of the weir
crest, C, is the submergence correction factor given by Eq. (45), h, is given by either

Eq. (46) or Eq. (47) in which h, is the water elevation downstream of the weir.

The change in manhole storage is given by the following:

As =025 xd2(h -h') ... h <h_ (48)

in which d, = the diameter (ft) of the manhole, h’ = the water elevation within the
manhole at time (t - At), and h,, = the elevation of the top of the manhole.
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The junction losses h, and h,, in Egs. (41-42) are approximated as follows:

2
Vi o+ Vi, :
h,, = K [._;__‘J /2g (49)
- 12
Vi o+ Vi,
h,, = K [__"i_‘} /28 (50)

in which V{, V{, and V;, are the velocities at time (t - At) of the upstream, branch; and
downstream conduits, respectively. The head loss coefficient (K) varies from about 0.10 to
0.30 for straight-flow-through junctions depending on junction geometry.?® The head losses
are assumed to be negligible or compensated by small drops in the inlet-outlet inverts within
the manhole for all flows less than about three-fourth of the outlet conduit’s full discharge
capacity.

Eq. (50) is not used when the branch conduit does not exist; in this case, the subscript (i) is
the same as i in Eq. (49).

Surface Flooding. Flooding of the surrounding surface area above the top of a manhole is
treated by either of two methods for each manhole. If the first, it is assumed that the
flooding occurs as the water elevation of the manhole increases above the top of the manhole
(hyn). When this occurs, Eq. (48) becomes:

As =d?@ -h')....h > h_ (51)

in which d, is the length (ft) of the flooded surface area which is assumed to be represented
by a square. It is further assumed that the surface flooding does not resuit in any permanent
loss of volume to the conduit system; thus, all of the flood waters return to the system as the
water level in the manhole diminishes. In the second method, the surface flooding occurs

when the manhole water elevation (h) becomes greater than h,, and the overtopping waters
are assumed to be permanently lost to the conduit system. The exiting flow is denoted by Q.
in Eq. (39); it is computed from Eq. (42) rewritten as follows:

Q =317d, @-h)?..h>h, (52

Submergence corrections are neglected in Eq. (52).

Off-Line Detention Storage and Pumping Basins. Detention basins which temporarily store
excess waters are connected to the conduit system via a manhole junction. The stored waters
are removed from the system via the term Q, in Eq. (39)-qnq computed using Egs. (42-47).

Q. may be plus or minus according to the relative values of h and h,. The term h, used in
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Eq. (46) is the water surface elevation of the detention basin; it is computed from a storage
balance of the detention basin at time (t - At).

s =5+ Q) - Q) 53

in which § and S*! are the surface storage area (ft) of the detention basin at times (t - At)
and (t - 2At), respectively. Q, represents outflow from the basin due to pumping.

If the basin has one or more pumps, Q, represents the total discharge from the pumps as
determined from a specified tabular head-discharge rating for each pump. Also, each pump
has a specified elevation of the detention basin water surface at which the pump starts and
one at which it stops pumping. The head (H) used to enter the head-discharge rating table to
determine the pump discharge is: ; o

H=h -h (54)

in which h, is the average head including friction losses against which each pump discharges,
and h, is the water surface elevation of the detention (pump) basin; h, is obtained through
interpolation of the surface area (S)-elevation (H,) table which is specified for each detention
or pump basin.

Drop Inlets. The invert of a conduit inlet to a manhole may be considerably higher than the
other inlet and outlet. Such drop inlets must be treated as an internal boundary since the
flow dropping into the manhole is governed by the critical flow equation rather than the
Saint-Venant equations. Thus, a very small Ax reach is specified immediately upstream of
the conduit outlet where critical flow occurs. The following two internal boundary equations
are used:

Q" -Qli=0 (55)

= (y/gA’/B )! =0 (56)

If the flow in the vicinity of the drop inlet starts to be pressurized such that the critical flow
point becomes submerged, Egs. (55-56) are replaced by the Saint-Venant equations. The
necessity of such a change is continually checked during the computations by comparing the

manhole water elevation (h) against the water elevation (hj“).

. ional Sensitivi
The model was tested for its sensitivity to the distance step (Ax), the time step (At), and the

chimney width (b). The computations were found to be insensitive to a range of Ax values
representing the usual spacing of manholes. The time step recommended for free surface
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flow using the 4-pt. implicit solution of the Saint-Venant equations applied to a circular
conduit is the following:

At < T/M 57

M = 2.67(1 + 3.78 n/(d¥¢ S7] (58)

in which T, is the duration of the rising limb of the inflow hydrograph, n is the Manning n,
d is the storm conduit diameter, and S is the bottom slope of the storm conduit. The units of
At and T, are the same (hr or sec).

Sensitivity of the computed results to variations in the time step (At) was tested on a number
of storm drainage networks. One such system is shown in Fig. 1. It consists of six
manholes, each with an inflow hydrograph having a time of rise of 0.25 hr.

Figure 1. Test Storm Drainage System

The system was.tested with and without surcharging; the latter condition was developed by
increasing the magnitude of the peak of the inflow hydrograph at manhole no. 4. Conduit
diameters vary from 3 to 6 ft, and the invert slope of each is 0.00075 ft/ft. The distance
(Ax) between each manhole is 580 ft. The At computed from Eq. (57) is 110 sec for

8 =0.60, ¢ =0.97, n = 0.010, and T, = 0.25. The computed maximum water surface
elevations, discharges, and times of occurrence at manhole nos. 1, 4, 5, and 6 were
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compared with those computed using a very small time step of 1.8 sec. The comparative
variations expressed as percent are shown in Table 1. The errors are quite small (less than
about 5 percent) for all At values less than or equal to 110 sec, that given by Eq. (57). As
At is considerably increased above this value, the error becomes significant. For larger T,
values, the time step which would produce insignificant errors could be increased.

Table 1. Average Errors (Percent) Associated with the
Maximum Computed Values at Manhole Nos. 1,
4, 5, and 6 for Various Time Steps

Time of | Water Surface B
[ At(sec) | Maximums | Elevation (Head) | Discharge
1.8 0. 0. 0.
18. 0.7 1.0 1.0
36. 0.8 12 1.7
110. 6.0 4.0 5.0
180. 11.9 6.5 8.4
450 6.7 29.8 28.1
_ ]

The computational requirements on an IBM 360/195 are approximately 0.009 sec per
manhole per time step and on a PRIME 750 computer this is increased by a factor of about
seven.

Summary and Conclusions

A nonlinear weighted impiicit finite difference model based on the complete Saint-Venant
equations of unsteady flow has been developed. The model is capable of simulating free
surface and/or pressurized flows, backwater effects, and flow reversals in a single storm
conduit or a complex dendritic network of conduits having cross-connections and muitiple
outlets. The storm conduit may have a circular or an arbitrary shape. Manhole effects
(junctions of two or three conduits, head losses, storage, surface flooding with or without
loss of volume), detention basin storage, pumping stations with one or more pumps with
individual operating characteristics, and critical flow drop-inlets are each simulated by
appropriate equations introduced as internal boundaries and solved simuitaneously with the
Saint-Venant finite difference equations and external boundary equations.

'1‘ -
Vo
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Pressurized flow is conveniently treated with the Saint-Venant equations by utilizing a very
narrow hypothetical chimney (slot) which extends upward from the top of the storm conduit.
This feature enables the wave celerity to change from a gravity wave to a pressure wave as )
the flow depth increases and reaches the top of the conduit whereupon the computed depth -
represents the pressure head. Conversely, the flow regime at any location or at any time
may change from pressurized to free surface. An equation is presented for computing the
proper chimney width which depends on the properties of the storm conduit and the storm
water.

Numerical testing of the model indicates a desirable insensitivity to reasonable ranges of the
distance step (Ax) and the time step (At). The former can be the normal distance between
manholes where flow and conduit properties may change, and the latter is selected to be less
than or equal to that given by an equation which relates the storm drains’ hydraulic
properties, the rate of inflow to the system, and the acceptable numerical solution error.
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